车辆转弯中道路前方障碍位置的自动检测.doc
约31页编号:55-218739DOC格式手机打开展开
车辆转弯中道路前方障碍位置的自动检测,摘要障碍物检测在智腀@盗臼泳醯己较低持姓加惺种匾淖饔谩;诨魇泳跫际醵哉习锏募觳夤桃治礁龇矫妫赫习锏氖侗鸷驼习锞嗬氲牟馑恪B畚氖紫冉樯芰酥悄@@盗驹诠谕獾姆⒄骨榭觯潭致哿嘶诘ツ渴泳醮淼恼习锸侗鸺际酢W酆戏治隽烁髦滞枷穹指罘椒ǎ⑼ü笛槎员确治觯∮盟宸ㄇ笕°兄岛螅酝枷窠写恚⒏...

内容介绍
Õª Òª
ÕϰÎï¼ì²âÔÚÖÇÄ@@µÁ¾ÊÓ¾õµ¼º½ÏµÍ³ÖÐÕ¼ÓÐÊ®·ÖÖØÒªµÄ×÷Ó᣻ùÓÚ»úÆ÷ÊÓ¾õ¼¼Êõ¶ÔÕϰÎïµÄ¼ì²â¹ý³ÌÒª·ÖΪÁ½¸ö·½Ã棺ÕϰÎïµÄʶ±ðºÍÕϰÎï¾àÀëµÄ²âËã¡£
ÂÛÎÄÊ×ÏȽéÉÜÁËÖÇÄ@@µÁ¾ÔÚ¹úÄÚÍâµÄ·¢Õ¹Çé¿ö£¬¼Ì¶øÌÖÂÛÁË»ùÓÚµ¥Ä¿ÊÓ¾õ´¦ÀíµÄÕϰÎïʶ±ð¼¼Êõ¡£×ۺϷÖÎöÁ˸÷ÖÖͼÏñ·Ö¸î·½·¨£¬²¢Í¨¹ýʵÑé¶Ô±È·ÖÎö£¬Ñ¡ÓÃË«·å·¨ÇóÈ¡ãÐÖµºó£¬¶ÔͼÏñ½øÐд¦Àí£¬²¢¸ù¾ÝͼÏñµÄÏñËØ²î¶ÔÕϰÎï½øÐÐʶ±ð¡£×îºóÀûÓÃ×îС¶þ³Ë·¨ÄâºÏ³öÕϰÎïÔÚͼÏñÖеÄλÖá£
¾¹ý¶à×éʵÑé¶Ô±ÈÖ¤Ã÷ÂÛÎÄÌá³öµÄÕϰÎï¼ì²â¡¢Ê¶±ð¼¼ÊõÄ@@õ²½Çø·ÖαÕϰÎï¡£ÇÒ²¢ÄܹÀËã³öÕϰÎïÔÚͼÏñÖеÄλÖá£ÊµÑé½á¹û±íÃ÷¸Ã·½·¨¾ßÓÐÒ»¶¨µÄʵʱÐÔ¡¢¿É¿¿ÐÔºÍ׼ȷÐÔ¡£
¹Ø¼ü´Ê£ºµ¥Ä¿ÊÓ¾õ£»Í¼Ïñ´¦Àí£»µ¥Ä¿²â¾à£»ÕϰÎï¼ì²â
ABSTRACT
Obstacle detection in the intelligent vehicle vision navigation system occupies a very important role£®Obstacle detection process is divided into two aspects: the identification of obstacles and obstructions distance estimates based on machine vision technology.
At the beginning of this paper, we firstly introduce the development of intelligence automobile oversea and domestic. Followed by, discussed the deal with the obstacle recognition technology based on monocular vision. Comprehensive analysis of a variety of image segmentation method, and experimental comparison, and selection of the bimodal France to strike the threshold, image processing, and to identify the obstacles according to the image's pixel difference. Least squares fit to the location of the obstacle in the image.
Prove the paper presents the obstacle detection and recognition technology to distinguish between pseudo-obstruction preliminary experimental comparison groups. And can estimate the location of the obstacle in the image. The experimental results show that the method has a certain timeliness, reliability and accuracy.
Key words: Monocular Vision; Image processing; Monocular Measurement; Obstacle Detection
Ŀ ¼
1 Ð÷ÂÛ 1
1.1 ¿ÎÌâÑо¿µÄ±³¾°ÒâÒå 1
1.2¿ÎÌâ¹úÄÚÍâÑо¿ÏÖ×´¼°³£Ó÷½·¨ 1
1.2.1 ¹úÍâÑо¿ÏÖ×´ 2
1.2.2 ¹úÄÚÑо¿ÏÖ×´ 3
1.2.3 ÕϰÎï¼ì²â·½·¨¸ÅÊö 3
1.4 ±¾ÂÛÎÄÄÚÈݸÅÊö 5
2 ÕϰÎïͼÏñµÄ²É¼¯ 6
2.1 ͼÏñµÄ¼ò½é 6
2.2 ÕϰÎïͼÏñµÄ¶Ô±È²É¼¯ 6
3 ÕϰÎïͼÏñµÄ·Ö¸î 9
3.1 ͼÏñ·Ö¸îµÄ¸ÅÊö 9
3.2 ãÐÖµ·Ö¸îµÄ»ù±¾ÔÀí¼°·ÖÀà 9
3.3ãÐÖµ·Ö¸î·¨µÄ±È½Ï¼°Ñ¡È¡ 11
3.4ͼÏñ·Ö¸îºóµÄ±ÕÔËËã´¦Àí 12
4 ÕϰÎïµÄÅбð¼°Î»Öüì²â 14
4.1 ÕϰÎïλÖÃ×ø±êµÄÈ·¶¨ 14
4.2 ÕϰÎïʶ±ð 16
4.3ÕϰÎïͼÏñµÄλÖüì²â 17
4.3.1×îС¶þ³Ë·¨µÄ¸ÅÊö 17
4.3.2ÕϰÎïλÖùÀ²âÄâºÏµÄ·½Ê½¼°½á¹û 18
4.4 ¼ì²â½á¹û¼°·ÖÎö 19
5 ×ܽἰչÍû 20
5.1ÂÛÎÄ×ܽá 20
5.2ºóÐø¹¤×÷½¨Òé 20
ÖÂл 21
²Î¿¼ÎÄÏ× 22
¸½Â¼ ³ÌÐò´úÂë 24
²Î¿¼ÎÄÏ×
[1]Àî±ó, ÍõÈÙ±¾, ¹ù¿ËÓÑ. »ùÓÚ»úÆ÷ÊÓ¾õµÄÖÇÄ@@µÁ¾ÕϰÎï¼ì²â·½·¨Ñо¿[J]. ¹«Â·½»Í¨¿Æ¼¼,2002Äê8Ô ,Vo1.19 No14
[2]¹Ë°ØÔ°£¬ÍõÈÙ±¾£¬ÓàÌìºéµÈ£®»ùÓÚÊÓ¾õµÄǰ·½³µÁ¾Ì½²â¼¼ÊõÑо¿·½·¨×ÛÊö[J]£®¹«Â·½»Í¨¿Æ¼¼£¬2005£¬22(10)£ºl14-120£®
κâù, ÀîÓî, ºúÊæÃÃ. ÃæÏò¸´ÔÓ±³¾°ÖвÊÉ«Á¢ÌåͼÏñµÄÕϰÎï¼ì²â[J]. ×Ô¶¯»¯¼¼ÊõÓëÓ¦ÓÃ[J].2007Äê, Vo1.26 No 7
[3]C.Thorpe, J.D.Carlson, D.Duggins, ets. Safe Robot Driving in Clucttered Environments. Proceedings of the 11th International Symposium of Robotics Research, October, 2003.
[4]P£®Bellutta, R£®Manduchi£¬L Matthles£®Terrain Peree Ption for DEMOl l l[C]£®Proceedings of the IEEE Intel ligent Vehicles SynlPoslum£¬2000£¬326-331£®
[5]Alberto Broggi£¬Massimo Bertozzl£¬Alessandra Faseiol i£®Automatic Vehicle Guidance£ºthe Experience of the ARGO Autonomous Vehicles [M]£¬USA£®World Science Publishing Co. Ltd. 1999£®
[6]Massimo Bertozzi£¬Alberto Broggi£®GOLD£ºA parallel Real-Time Stereo Vision System for Generic Obstacle and Lane Detection[C]£®IEEE Transactions on Image Proeessing, 1998,7(1)£º62-81£®
[7]ÕÅÅó·É£¬ºÎ¿ËÖÒ£¬Å·ÑôÕýÖùµÈ£®¶à¹¦ÄÜÊÒÍâÖÇÄÜÒÆ¶¯»úÆ÷ÈËÊÔÑéÆ½Ì¨-THMR-V[J]£¬2002£¬24(2)£º97-101£®
[8]´ÞÐÇ£¬ÈòÇå¶«£®»ùÓÚÖ¡¼ä²î·Ö·½·¨µÄµÀ·³µÁ¾¼ì²âϵͳ[J]£®Î¢¼ÆËã»úÐÅÏ¢£¬2007£¬23(4-1)£®
[9]Ñîºé·â£®ÊÓÆµÐòÁÐÖÐÔ˶¯Ä¿±êµÄʵʱ·Ö¸îÓë¸ú×Ù£®[˶ʿѧλÂÛÎÄ]£®Î÷°²£ºÎ÷°²Àí¹¤´óѧ£®2003£®3£º19-21
[10]GANDHIT£¬DEVADIGAS£¬KASTURIR£¬eta1£®Detection of Obstacles on Runways using Ego-motion Compensation and Tracking of Significant Features[J]Int£®J£®of Image and Vi sion Computing£¬2000£¬18(10)£º302-303£®
[11]ÑîÎĽܣ¬ºúÃ÷Î⣬Ñî¾²ÓһÖÖ»ùÓÚ¹âÁ÷µÄÕϰÎï¹À¼ÆËã·¨[J]£®¼ÆËã»ú¹¤³ÌÓëÓ¦Óã¬2006£¬42(5)£º80-81£®
[12]ÖìÔÆ·¼£¬ÍõêÝÊõ£¬¶Åì§£®¾²Ì¬»·¾³ÖлùÓÚ¹âÁ÷µÄÕϰÎï¼ì²â[J]£®Õã½´óѧѧ±¨£¬2008£¬42(6)£®
[13]´Þ¸ß½¨£¬»ÆÒø»¨£¬ÌïÔ£¬»ùÓÚÁ¢ÌåÊÓ¾õµÄǰ·½³µÁ¾Ì½²â[J]£®2005£¬13(9)£º890-899£®
[14]Ze hang Sun¡£George Bebis£¬Ronald Miller£®On-Road Vehicle Detection Using Evolutionary Gabor Filter Optimization. IEEE Transactions on Intell igent Transportation Systems£¬2005£¬6(2)£º125-137£®
[15]ÕÔÒ»±ø£¬ÍõÈÙ±¾£¬ÀîÁջԵȣ®»ùÓÚ¼¤¹âÀ×´ïµÄÎÞÈ˼ÝÊ»³µÇ°·½ÕϰÎï¼ì²â[J]£®½»Í¨Óë¼ÆËã»ú£¬2007£¬25(135)£®
[16]WANG Rongben. GU Bai yuan£¬JIN Li sheng£®Study on curb detection method based on 3D range image by laser radar£®Proceedings of the IEEE Intelligent Vehicles Symposium£¬USA£®2005£®
[17]ºòµÂÔ壬Àî¿ËÇ¿¡£ÐÂÐͳµÔØÌ½²âÀ×´ïϵͳ¼¼ÊõÑо¿£®Öйú»úе¹¤³Ì£¬2004£¬15(21)..
ÕϰÎï¼ì²âÔÚÖÇÄ@@µÁ¾ÊÓ¾õµ¼º½ÏµÍ³ÖÐÕ¼ÓÐÊ®·ÖÖØÒªµÄ×÷Ó᣻ùÓÚ»úÆ÷ÊÓ¾õ¼¼Êõ¶ÔÕϰÎïµÄ¼ì²â¹ý³ÌÒª·ÖΪÁ½¸ö·½Ã棺ÕϰÎïµÄʶ±ðºÍÕϰÎï¾àÀëµÄ²âËã¡£
ÂÛÎÄÊ×ÏȽéÉÜÁËÖÇÄ@@µÁ¾ÔÚ¹úÄÚÍâµÄ·¢Õ¹Çé¿ö£¬¼Ì¶øÌÖÂÛÁË»ùÓÚµ¥Ä¿ÊÓ¾õ´¦ÀíµÄÕϰÎïʶ±ð¼¼Êõ¡£×ۺϷÖÎöÁ˸÷ÖÖͼÏñ·Ö¸î·½·¨£¬²¢Í¨¹ýʵÑé¶Ô±È·ÖÎö£¬Ñ¡ÓÃË«·å·¨ÇóÈ¡ãÐÖµºó£¬¶ÔͼÏñ½øÐд¦Àí£¬²¢¸ù¾ÝͼÏñµÄÏñËØ²î¶ÔÕϰÎï½øÐÐʶ±ð¡£×îºóÀûÓÃ×îС¶þ³Ë·¨ÄâºÏ³öÕϰÎïÔÚͼÏñÖеÄλÖá£
¾¹ý¶à×éʵÑé¶Ô±ÈÖ¤Ã÷ÂÛÎÄÌá³öµÄÕϰÎï¼ì²â¡¢Ê¶±ð¼¼ÊõÄ@@õ²½Çø·ÖαÕϰÎï¡£ÇÒ²¢ÄܹÀËã³öÕϰÎïÔÚͼÏñÖеÄλÖá£ÊµÑé½á¹û±íÃ÷¸Ã·½·¨¾ßÓÐÒ»¶¨µÄʵʱÐÔ¡¢¿É¿¿ÐÔºÍ׼ȷÐÔ¡£
¹Ø¼ü´Ê£ºµ¥Ä¿ÊÓ¾õ£»Í¼Ïñ´¦Àí£»µ¥Ä¿²â¾à£»ÕϰÎï¼ì²â
ABSTRACT
Obstacle detection in the intelligent vehicle vision navigation system occupies a very important role£®Obstacle detection process is divided into two aspects: the identification of obstacles and obstructions distance estimates based on machine vision technology.
At the beginning of this paper, we firstly introduce the development of intelligence automobile oversea and domestic. Followed by, discussed the deal with the obstacle recognition technology based on monocular vision. Comprehensive analysis of a variety of image segmentation method, and experimental comparison, and selection of the bimodal France to strike the threshold, image processing, and to identify the obstacles according to the image's pixel difference. Least squares fit to the location of the obstacle in the image.
Prove the paper presents the obstacle detection and recognition technology to distinguish between pseudo-obstruction preliminary experimental comparison groups. And can estimate the location of the obstacle in the image. The experimental results show that the method has a certain timeliness, reliability and accuracy.
Key words: Monocular Vision; Image processing; Monocular Measurement; Obstacle Detection
Ŀ ¼
1 Ð÷ÂÛ 1
1.1 ¿ÎÌâÑо¿µÄ±³¾°ÒâÒå 1
1.2¿ÎÌâ¹úÄÚÍâÑо¿ÏÖ×´¼°³£Ó÷½·¨ 1
1.2.1 ¹úÍâÑо¿ÏÖ×´ 2
1.2.2 ¹úÄÚÑо¿ÏÖ×´ 3
1.2.3 ÕϰÎï¼ì²â·½·¨¸ÅÊö 3
1.4 ±¾ÂÛÎÄÄÚÈݸÅÊö 5
2 ÕϰÎïͼÏñµÄ²É¼¯ 6
2.1 ͼÏñµÄ¼ò½é 6
2.2 ÕϰÎïͼÏñµÄ¶Ô±È²É¼¯ 6
3 ÕϰÎïͼÏñµÄ·Ö¸î 9
3.1 ͼÏñ·Ö¸îµÄ¸ÅÊö 9
3.2 ãÐÖµ·Ö¸îµÄ»ù±¾ÔÀí¼°·ÖÀà 9
3.3ãÐÖµ·Ö¸î·¨µÄ±È½Ï¼°Ñ¡È¡ 11
3.4ͼÏñ·Ö¸îºóµÄ±ÕÔËËã´¦Àí 12
4 ÕϰÎïµÄÅбð¼°Î»Öüì²â 14
4.1 ÕϰÎïλÖÃ×ø±êµÄÈ·¶¨ 14
4.2 ÕϰÎïʶ±ð 16
4.3ÕϰÎïͼÏñµÄλÖüì²â 17
4.3.1×îС¶þ³Ë·¨µÄ¸ÅÊö 17
4.3.2ÕϰÎïλÖùÀ²âÄâºÏµÄ·½Ê½¼°½á¹û 18
4.4 ¼ì²â½á¹û¼°·ÖÎö 19
5 ×ܽἰչÍû 20
5.1ÂÛÎÄ×ܽá 20
5.2ºóÐø¹¤×÷½¨Òé 20
ÖÂл 21
²Î¿¼ÎÄÏ× 22
¸½Â¼ ³ÌÐò´úÂë 24
²Î¿¼ÎÄÏ×
[1]Àî±ó, ÍõÈÙ±¾, ¹ù¿ËÓÑ. »ùÓÚ»úÆ÷ÊÓ¾õµÄÖÇÄ@@µÁ¾ÕϰÎï¼ì²â·½·¨Ñо¿[J]. ¹«Â·½»Í¨¿Æ¼¼,2002Äê8Ô ,Vo1.19 No14
[2]¹Ë°ØÔ°£¬ÍõÈÙ±¾£¬ÓàÌìºéµÈ£®»ùÓÚÊÓ¾õµÄǰ·½³µÁ¾Ì½²â¼¼ÊõÑо¿·½·¨×ÛÊö[J]£®¹«Â·½»Í¨¿Æ¼¼£¬2005£¬22(10)£ºl14-120£®
κâù, ÀîÓî, ºúÊæÃÃ. ÃæÏò¸´ÔÓ±³¾°ÖвÊÉ«Á¢ÌåͼÏñµÄÕϰÎï¼ì²â[J]. ×Ô¶¯»¯¼¼ÊõÓëÓ¦ÓÃ[J].2007Äê, Vo1.26 No 7
[3]C.Thorpe, J.D.Carlson, D.Duggins, ets. Safe Robot Driving in Clucttered Environments. Proceedings of the 11th International Symposium of Robotics Research, October, 2003.
[4]P£®Bellutta, R£®Manduchi£¬L Matthles£®Terrain Peree Ption for DEMOl l l[C]£®Proceedings of the IEEE Intel ligent Vehicles SynlPoslum£¬2000£¬326-331£®
[5]Alberto Broggi£¬Massimo Bertozzl£¬Alessandra Faseiol i£®Automatic Vehicle Guidance£ºthe Experience of the ARGO Autonomous Vehicles [M]£¬USA£®World Science Publishing Co. Ltd. 1999£®
[6]Massimo Bertozzi£¬Alberto Broggi£®GOLD£ºA parallel Real-Time Stereo Vision System for Generic Obstacle and Lane Detection[C]£®IEEE Transactions on Image Proeessing, 1998,7(1)£º62-81£®
[7]ÕÅÅó·É£¬ºÎ¿ËÖÒ£¬Å·ÑôÕýÖùµÈ£®¶à¹¦ÄÜÊÒÍâÖÇÄÜÒÆ¶¯»úÆ÷ÈËÊÔÑéÆ½Ì¨-THMR-V[J]£¬2002£¬24(2)£º97-101£®
[8]´ÞÐÇ£¬ÈòÇå¶«£®»ùÓÚÖ¡¼ä²î·Ö·½·¨µÄµÀ·³µÁ¾¼ì²âϵͳ[J]£®Î¢¼ÆËã»úÐÅÏ¢£¬2007£¬23(4-1)£®
[9]Ñîºé·â£®ÊÓÆµÐòÁÐÖÐÔ˶¯Ä¿±êµÄʵʱ·Ö¸îÓë¸ú×Ù£®[˶ʿѧλÂÛÎÄ]£®Î÷°²£ºÎ÷°²Àí¹¤´óѧ£®2003£®3£º19-21
[10]GANDHIT£¬DEVADIGAS£¬KASTURIR£¬eta1£®Detection of Obstacles on Runways using Ego-motion Compensation and Tracking of Significant Features[J]Int£®J£®of Image and Vi sion Computing£¬2000£¬18(10)£º302-303£®
[11]ÑîÎĽܣ¬ºúÃ÷Î⣬Ñî¾²ÓһÖÖ»ùÓÚ¹âÁ÷µÄÕϰÎï¹À¼ÆËã·¨[J]£®¼ÆËã»ú¹¤³ÌÓëÓ¦Óã¬2006£¬42(5)£º80-81£®
[12]ÖìÔÆ·¼£¬ÍõêÝÊõ£¬¶Åì§£®¾²Ì¬»·¾³ÖлùÓÚ¹âÁ÷µÄÕϰÎï¼ì²â[J]£®Õã½´óѧѧ±¨£¬2008£¬42(6)£®
[13]´Þ¸ß½¨£¬»ÆÒø»¨£¬ÌïÔ£¬»ùÓÚÁ¢ÌåÊÓ¾õµÄǰ·½³µÁ¾Ì½²â[J]£®2005£¬13(9)£º890-899£®
[14]Ze hang Sun¡£George Bebis£¬Ronald Miller£®On-Road Vehicle Detection Using Evolutionary Gabor Filter Optimization. IEEE Transactions on Intell igent Transportation Systems£¬2005£¬6(2)£º125-137£®
[15]ÕÔÒ»±ø£¬ÍõÈÙ±¾£¬ÀîÁջԵȣ®»ùÓÚ¼¤¹âÀ×´ïµÄÎÞÈ˼ÝÊ»³µÇ°·½ÕϰÎï¼ì²â[J]£®½»Í¨Óë¼ÆËã»ú£¬2007£¬25(135)£®
[16]WANG Rongben. GU Bai yuan£¬JIN Li sheng£®Study on curb detection method based on 3D range image by laser radar£®Proceedings of the IEEE Intelligent Vehicles Symposium£¬USA£®2005£®
[17]ºòµÂÔ壬Àî¿ËÇ¿¡£ÐÂÐͳµÔØÌ½²âÀ×´ïϵͳ¼¼ÊõÑо¿£®Öйú»úе¹¤³Ì£¬2004£¬15(21)..